翻訳と辞書 |
Krein–Rutman theorem : ウィキペディア英語版 | Krein–Rutman theorem In functional analysis, the Krein–Rutman theorem is a generalisation of the Perron–Frobenius theorem to infinite-dimensional Banach spaces. It was proved by Krein and Rutman in 1948.〔. English translation: 〕 ==Statement==
Let ''X'' be a Banach space, and let ''K''⊂''X'' be a convex cone such that ''K''-''K'' is dense in ''X''. Let ''T'':''X''→''X'' be a non-zero compact operator which is ''positive'', meaning that ''T''(''K'')⊂''K'', and assume that its spectral radius ''r''(''T'') is strictly positive. Then ''r''(''T'') is an eigenvalue of ''T'' with positive eigenvector, meaning that there exists ''u''∈K\0 such that ''T''(''u'')=''r''(''T'')''u''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Krein–Rutman theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|